У человека световое излучение может вызвать ожоги кожи

У человека световое излучение может вызвать ожоги кожи thumbnail

Поражающие факторы ядерного оружия

 При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% – на световое излучение, 10% – на радиоактивное заражение, 4% – на проникающую радиацию и 1% – на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.

  Ударная волна (УВ) основной поражающий фактор ядерного взрыва, который производит разрушение, повреждение зданий и сооружений, а также поражает людей и животных. Источником УВ является сильное давление, образующееся в центре взрыва (миллиарды атмосфер). Образовавшееся при взрыве раскаленные газы, стремительно расширяясь, передают давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воздействуют на следующие слои и т.д. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления.

Поражающее действие УВ характеризуется величиной избыточного давления.

 Избыточное давление – это разность между максимальным давлением во фронте УВ и нормальным атмосферным давлением, измеряется в Паскалях (ПА, кПА). Распространяется со сверх звуковой скоростью, УВ на своем пути разрушает здания и сооружения, образуя четыре зоны разрушений (полных, сильных, средних, слабых) в зависимости от расстояния: Зона полных разрушений — 50 кПА Зона сильных разрушений — 30-50 кПА. Зона средних разрушений — 20-30 кПА. Зона слабых разрушений — 10-20 кПА.

Разрушения строительных сооружений, производимые избыточным давлением:
720 кг/м2 (1 psi — фунт/кв. дюйм) — вылетают окна и двери;
2160 кг/м2 (3 psi) — разрушение жилых домов;
3600 кг/м2 (5 psi) — разрушение или сильное повреждение зданий из монолотного железобетона;
7200 кг/м2 (10 psi) — разрушение особо прочных бетонных сооружений;
14400 кг/м2 (20 psi) — выдерживают такое давление только специальные сооружения (типа бункеров).
Радиусы распространения этих зон давления можно рассчитать по следующей формуле:
R = C * X0.333,
R — радиус в километрах, X — заряд в килотоннах, C — константа, зависящая от уровня давления:
C = 2.2, для давления 1 psi
C = 1.0, для давления 3 psi
C = 0.71, для давления 5 psi
C = 0.45, для давления 10 psi
C = 0.28, для давления 20 psi

Ударная волна действует на людей двумя способами:

  Прямое действие ударной волны и косвенное действие УВ ( летящими обломками сооружений, падающими стенами домов и деревьями, осколками стекла, камнями). Эти воздействия вызывают различные по степени тяжести поражения: Легкие поражения — 20-40 кПА (контузии, легкие ушибы). Средней тяжести — 40-60 кПА (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей, сотрясение мозга). Тяжелые поражение — более 60 кПА (сильные контузии, переломы конечностей, поражение внутренних органов). Крайне тяжелые поражения — более 100кПА ( со смертельным исходом). Эффективным способом защиты от прямого воздействия УВ будет укрытие в защитных сооружениях (убежищах, ПРУ, быстровозводимых населением). Для укрытия можно использовать канавы, овраги, пещеры, горные выработки, подземные переходы; можно просто лечь на землю в отдалении от зданий и сооружений.

Световое излучение (СИ) – это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником СИ является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. СИ распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия СИ очень высока. СИ составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится.

Поражающее действие светового излучения характеризуется световым импульсом, т. е. количеством световой энергии, приходящейся за время излучения на 1 см2 поверхности, перпендикулярно расположенной к направлению световых лучей. За единицу измерения светового импульса принимают 1 кал/см2.

Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов. Поражение людей СИ выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза.

Так, при световом импульсе 2—4 кал/см2 у незащищенных людей могут возникнуть ожоги первой степени (краснота, припухлость, отек кожи – 100-200 кДж/м2).

При 4—6 кал/см2— ожоги второй степени (на фоне отечной кожи образуются пузыри разных размеров, наполненные прозрачной желтоватой жидкостью– 200-400 кДж/м2).

При 6— 12 кал/см2—ожоги третьей степени (полное омертвление кожных покровов и образование язв – 400-600 кДж/м2)

При световом импульсе более 12 кал/см2 ожоги четвёртой степени (обугливание кожи, омертвление глубоких слоев кожи и подлежащих ткани (подкожная жировая клетчатка, мышцы, кости).  – более 600 кДж/м2).

Действие СИ на глаза: Временное ослепление – до 30 мин. Ожоги роговицы и век. Ожог глазного дна – слепота.

Световое излучение вызывает ожоги кожи, степень которых зависит от силы бомбы и удаленности от эпицентра:

Тяжесть ожога

20 кт

1 Мт

20 Мт

1-й степени

2.5 кал/см2 (4.3 км)

3.2 кал/см2 (18 км)

5 кал/см2 (52 км) 

2-й степени

 5 кал/см2 (3.2 км) 

6 кал/см2 (14.4 км) 

8.5 кал/см2 (45 км)

3-й степени

8 кал/см2 (2.7 км) 

10 кал/см2 (12 км) 

12 кал/см2 (39 км)

 Проникающая радиация — это поток гамма-лучей и нейтронов, испускаемый из области взрыва в течении нескольких секунд. Из-за очень сильного поглощения в атмосфере, проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов. Расстояния, пройдя которое поток ослабевает в 10 раз для различных величин взрывов:
1 кт: L = 330 м
10 кт: L = 440 м
100 кт: — L = 490 м
1 Мт: L = 560 м
10 Мт: L = 670 м
20 Мт: L = 700 м.
Таким образом, можно вычислить уровень радиации на любом расстоянии от эпицентра:

  Doze — доза приникающей радиации в рад, D — расстояние в метрах, L — константа ослабления, X — мощность взрыва в килотоннах.

При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

  Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

  Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

  Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека.

  Ослабляющее действие ПР принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который ПР уменьшается в два раза. Так, ПР ослабляют в два раза следующие материалы:

  Свинец – 1.8 см      Грунт, кирпич – 14 см      Сталь – 2.8 см    Вода – 23 см    Бетон – 10 см      Дерево – 30 см.

 1 степень лучевой болезни – легкая – 100-200 бэр,

  2 степень  лучевой болезни – средней тяжести 200-400 бэр,

  3 степень лучевой болезни  – тяжелая – 400-600 бэр,

  4 степень лучевой болезни  – крайне тяжелая – более 600 бэр.

                                                                Радиоактивное заражение

Зона А – умеренного заражения – от 40 до 400 бэр. Зона умеренного заражения – самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения.

Менее 100 бэр.
    Такие дозы не оказывают существенного влияния на здоровье. Изменения в составе крови начинаются с 25 бэр. Эти изменения включают в себя общие изменение содержания белых кровяных клеток (уменьшение лимфоцитов), уменьшение тромбоцитов, и небольшое уменьшение красных кровяных клеток, такое состояние определяется лишь по анализу крови и устанавливается в течении нескольких дней после облучения. Продолжительность изменений в организме — около месяца. При 50 бэр становятся заметными ослабление лимфатических желез, снижение иммунитета. 80 Бэр дают 50% вероятность временного бесплодия у мужчин.

100-200 бэр.
    Симптомы умеренной степени тяжести. Возможна тошнота (в половине случаев при 200 бэр), иногда сопровождающаяся рвотой, появляющаяся через 3-6 часов после получения дозы и длящаяся от нескольких часов до дня. За этим следует период ремиссии, в течении которого пострадавший находится в нормальном самочувствии. Изменения в крови постепенно нарастают из-за естественной убыли и невосполнения кровяных клеток. Через 10-14 дней происходит следующее ухудшение самочувствия: потеря аппетита (у 50% при 150 бэр), недомогание, утомляемость (у 50% при 200 бэр) продолжающееся около месяца. В это время отмечается повышенная заболеваемость, из-за сниженного иммунитета, временное бесплодие у мужчин. Для доз из верхнего предела этого интервала клиническая картина сходная, за исключением меньшего периода ремиссии, более выраженных симптомов и большего периода выздоровления.

200-400 бэр.
Степень заболевания достаточно серьезна. Основной пораженной тканью организма остается кроветворная. Тошнота наблюдается у 100% пострадавших при облучении в 300 бэр, в половине случаев она сопровождается рвотой. Начальные симптомы выявляются уже после 1-6 часов и длятся 1-2 дня. После 7-14 дней ремиссии, они возвращаются, к ним может прибавиться потеря волос, недомогание, усталость, диарея. При дозах более 350 бэр появляются кровотечения изо рта, подкожные, гематурия — наличие крови в моче. Возможно постоянное бесплодие у мужчин, выздоровление занимает несколько месяцев.

Зона Б – сильного заражения – от 400 до 1200 бэр. В зоне сильного заражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки.

400-600 бэр.
При таких дозах полученной радиации, смертность, без оказания серьезной медицинской помощи (пересадка костного мозга), резко идет вверх: от 50% при 350 бэр до 90% при 600. Первоначальные симптомы возникают в период от 30 мин до 2 часов и продолжаются до двух дней. После 1-2 недель появляются все признаки характерные для облучения в 200-400 бэр, только в гораздо более тяжелой форме. Смерть наступает после 2-12 недель от многочисленных кровоизлияний и заражения каким-либо заболеванием (иммунитет практически отсутствует). Период излечения — около года, состав крови нормализуется еще дольше. Может происходить развитие бесплодия у женщин.

600-1000 бэр.
Костный мозг отмирает практически полностью. Вероятность выжыть без его пересадки — отсутствует. Первоначальное ухудшение состояния наступает через 15-30 минут, и продолжается 2 дня. После 5-10 дней скрытого периода смерть наступает через 1-4 недели.

Зона В – опасного заражения – от 1200 до 4000 бэр. В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время.

Более 1000 бэр.
Такие высокие дозы ионизирующего излучения вызывают немедленное нарушение обмена веществ, понос, кровотечения, потерю жидкости организмом и нарушение электролитного баланса.
    При дозах 1000 — 5000 бэр это время уменьшается до 5-30 минут. Если удается пережить этот период, наступает фаза мнимого благополучия от пары часов до пары дней. Термальная фаза продолжается 2-10 дней, в течении ее больной впадает в прострацию, теряет аппетит, начинается кровавый понос. Пострадавший впадает в делирий, затем кому. Лечение таких доз направлено только на облегчение страданий умирающего.

Зона Г – чрезвычайно опасного заражения – от 4000 до 7000 бэр. 100% смертельная зона для человека.

  Получение более 5000 бэр приводит к нарушением, затрагивающим непосредственно нервную систему. Человек моментально теряет ориентацию, чуть позже впадает в кому. Смерть наступает в течении двух суток.
    Согласно оценкам, доза в 8000 бэр, например от нейтронной бомбы, ведет к моментальному впадению в кому и последующей смерти.

  Для защиты населения от РЗМ используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) – от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах РЗМ населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).

  Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре.

 Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. Защита от ЭМИ осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. ЭМИ составляет 1% от мощности ядерного боеприпаса.

 На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.

Источник

Ожоги глаз световым излучением: признаки, лечение

Особый вид поражения глаз, иногда принимающего массовый характер, представляет так называемая «снеговая офталмия». Заболевание вполне соответствует «электрической офталмии», которая наблюдается после облучения глаз сильным источником ультрафиолетовых лучей (при электросварке и др.). Снеговая офталмия чаще наблюдается ранней весной при ярком солнце и обширном снеговом покрове, который отражает огромное количество ультрафиолетовых лучей. На широких просторах севера и на снежных вершинах гор снеговая офталмия может наблюдаться одновременно у большого числа людей.

Первые признаки ее появляются через 4—6 часов после облучения (скрытый период). Глаза начинают сильно болеть, слезиться, наблюдаются светобоязнь и блефароспазм. Конъюнктива при этом резко гиперемирована. В роговице появляются мелкие поверхностные помутнения и пузырьки.

Чтобы предупредить снеговую офталмию, необходимо снабдить военнослужащих в соответствующих условиях темными очками-консервами, лучше всего желто-зелено-дымчатыми, пропускающими около 20% общего светового потока (Б. И. Тихвинский).

При развившихся симптомах снеговой офталмии рекомендуется в случае сильных болей закапать в глаза 1 % раствор кокаина или 0,1% раствор дикаина (1—2 капли), а также применять холодные примочки на веки (вода или 2% раствор борной кислоты). Если имеются дефекты эпителия роговицы, целесообразно впустить за веки 1—2 капли рыбьего жира или вазелинового масла. Повязку накладывать не следует. Ввиду значительной светобоязни больного нужно поместить в затемненную комнату или снабдить темными очками-консервами.

Все явления ожога ультрафиолетовыми лучами проходят обычно через 1—2 дня. Лечение должно проводиться при части.

Судя по материалам зарубежной литературы (Флик, Коген, Мартин, Кимура и Икуи и др.), у пострадавших при взрывах атомных бомб в 1945 г. в японских городах Хиросиме и Нагасаки во многих случаях наблюдались поражения конъюнктивы и роговицы, сходные с картиной «снеговой офталмии». По-видимому, они были вызваны ультрафиолетовой частью мощного светового излучения огненного шара, образующегося в момент взрыва атомной бомбы. Явления острого конъюнктивита протекали в этих случаях без патогенной флоры в отделяемом и заканчивались в течение нескольких дней.

Инфракрасная и видимая части светового излучения при взрыве атомной бомбы вызвали у многих пострадавших термические ожоги кожи открытых частей тела: головы, лица, шеи, кистей рук. Для этих ожогов характерными были резкие границы между обожженными и здоровыми участками кожи, а также так называемая «профильная локализация» (ожог только на стороне, обращенной в сторону вспышки взрыва). Описан случай, когда надетая шапка предохранила верхнюю часть головы и глаза от ожога. Точных сведений о частоте и тяжести поражений органа зрения при таких ожогах опубликовано не было.

ожог глаз

Японские авторы Ояма и Сасаки обнаружили парамакулярный ожог сетчатки у одной из пострадавших в Хиросиме, смотревшей в момент взрыва на летящий самолет. Этот ожог сетчатки напоминал поражение, характерное для лиц, наблюдавших солнечное затмение незащищенными глазами. Других аналогичных случаев хориоретинальных ожогов у пострадавших в японских городах зарегистрировано не было. У многих лиц было отмечено лишь кратковременное «ослепление» после сверхъяркой вспышки взрыва, связанное, вероятно, с нарушением адаптации к обычному дневному свету и продолжавшееся около 5 минут.

Следует напомнить, что огненный шар, возникающий в момент взрыва бомбы (через стотысячные доли секунды), имеет около 15 м в диаметре, температуру на поверхности 1000 000° и яркость примерно в 100 раз большую, чем яркость солнца. Этот огненный шар очень быстро увеличивается и поднимается кверху, причем температура его мгновенно снижается и уже через 1 секунду составляет на поверхности шара всего несколько тысяч градусов. Высказывалось предположение, что сверхъяркая световая вспышка в момент взрыва вызывает моментальный защитный рефлекс смыкания век и что это предохраняет сетчатку от более тяжелого макулярного ожога, характерного для лиц, длительно наблюдавших солнечное затмение незащищенными глазами.

Однако предположение о такой роли мигательного рефлекса встретило в последние годы серьезные возражения. Бюттнер и Роуз отметили, что 35% световой энергии вспышки атомного взрыва достигают глаза в течение первой 0,001 секунды, т. е. значительно раньше, чем успевает осуществиться мигательный рефлекс у человека (0,1 секунды). Что касается зрачкового рефлекса, то он имеет еще большую продолжительность и поэтому также не может защитить сетчатку от ожога в момент вспышки атомного взрыва.

Бюттнер и Роуз теоретически рассчитали, что расстояния, на которых могут возникать хориоретинальные ожоги, должны быть гораздо больше тех расстояний, на которых происходят все другие повреждения, вызываемые взрывом атомной бомбы. Ожоги сетчатки вызываются энергией инфракрасного и видимого излучения такой же силы, какая вызывает ожоги кожи. Однако в отношении ожогов сетчатки особое значение приобретает оптический фактор. Вследствие фокусирующего действия преломляющей системы глаза на сетчатке получается яркое изображение огненного шара атомного взрыва. Степень яркости этого изображения зависит в основном от ширины зрачка и почти не зависит от расстояния.

С увеличением расстояния в 2 раза площадь изображения на сетчатке уменьшается в 4 раза, но на каждую единицу этой площади падает (и поглощается пигментом глазного дна) количество энергии, почти не зависящее от расстояния (если не считать количества света, поглощаемого атмосферой) . Большая концентрация тепловой энергии на малой площади может вызвать коагуляцию ткани сетчатки. Если к тому же происходит моментальное образование пузырьков пара в пигментном эпителии и сетчатке, разрушение ткани усиливается «микровзрывами».

Роуз и другие авторы рассчитали, что если взрыв атомной бомбы происходит ночью, когда зрачки максимально расширены, количество энергии, поглощаемой на единице площади глазного дна в течение 0,001 секунды, должно быть достаточным, чтобы вызвать ожог сетчатки на расстоянии 40 миль (64 км) от места взрыва при исключительно прозрачном воздухе. Опасность хориоретинального ожога должна значительно снижаться в дневное время, когда площадь зрачка резко уменьшается (у кролика в 50 раз), а также при меньшей прозрачности воздуха.

Бирнс, Броун, Роуз и Сибис полагают, что одной из причин отсутствия таких хориоретинальных ожогов у пострадавших при взрыве в Хиросиме являлось то, что зрачки у них были резко сужены, так как взрыв атомной бомбы имел место при ярком солнечном свете.

С целью проверки своих теоретических расчетов эти авторы поставили опыты на 700 пигментированных кроликах во время 6 экспериментальных взрывов номинальных атомных бомб (тротиловый эквивалент каждой бомбы был равен 20 000 тонн). Взрывы производились в Неваде (США) в ночное время. При этом типичные очаги хориоретинальных ожогов были обнаружены у кроликов на дистанции от 5 до 42,5 мили (8—68 км).

Эти опыты представляют известный интерес, но вопрос об их практическом значении остается неясным. Расчеты упомянутых авторов показывают, что если в момент взрыва атомной бомбы имеется хотя бы легкий туман в атмосфере, ожог сетчатки у людей возможен только на сравнительно небольших дистанциях от места взрыва (до 4,6 км днем и до 5,9 км ночью). К тому же следует предположить, что ввиду весьма малых размеров очагов поражения на глазном дне при таких ожогах они в подавляющем большинстве случаев не должны заметно влиять на зрительные функции. Редкое исключение могут составить лишь те лица, взор которых в момент взрыва (0,001 секунды) будет случайно направлен таким образом, что изображение огненного шара взрыва попадет точно на область желтого пятна или на сосок зрительного нерва.

По-видимому, это может объяснить, почему у лиц, пострадавших в Хиросиме и Нагасаки, не были зарегистрированы хориоретинальные ожоги (за исключением одного случая).

В конце 1955 г. Лэндесберг описал второй такой же случай хориоретинального ожога у человека. Ожог был получен в 1953 г. во время ночного экспериментального взрыва атомной бомбы.

Американский офицер, находившийся на расстоянии 3700 ярдов (3,3 км) от места взрыва, по сигналу спускался в укрытие (траншею), но оглянулся через левое плечо в сторону ожидаемого взрыва. В этот момент бомба взорвалась. По словам этого офицера, он увидел «очень яркий, белый, слепящий свет». После этого он в течение нескольких минут ничего не видел, затем зрение стало восстанавливаться и на правом глазу восстановилось уже через 7 часов. Этот глаз мало пострадал, так как был защищен тенью носа (было лишь временное «ослепление» с последующим восстановлением остроты зрения до 1,0). Что касается левого (незащищенного) глаза, то на глазном дне его был обнаружен типичный очаг хориоретинального ожога в области желтого пятна. В дальнейшем на этом глазу осталось стойкое понижение зрения до 0,2 и небольшая центральная скотома (5°).

В последнее время появилось описание еще 6 таких же случаев хориоретинального ожога различной тяжести в области желтого пятна. Эти ожоги были обнаружены у летчиков, смотревших на вспышки атомных взрывов с расстояния 2—10 миль (Роуз, Броун и др.).

— Также рекомендуем «Сортировка, эвакуация глазных раненых в военно-полевых условиях»

Оглавление темы «Поражения глаз»:

  1. Термохимические и химические ожоги глаз: первая медицинская помощь, лечение
  2. Ожоги глаз световым излучением: признаки, лечение
  3. Сортировка, эвакуация глазных раненых в военно-полевых условиях
  4. Изменения глаз при черепно-мозговой травме. Особенности
  5. Изменения глазного дна при черепно-мозговой травме. Особенности
  6. Поля зрения при черепно-мозговой травме. Особенности
  7. Поражение глаз боевыми отравляющими веществами (БОВ). Слезоточивые отравляющие вещества (лакриматоры)
  8. Поражение глаз отравляющими веществами раздражающего действия, удушающего действия. Особенности
  9. Поражение глаз отравляющими веществами кожно-резорбтивного действия. Особенности
  10. Поражение глаз отравляющими веществами общетоксического действия. Особенности
  11. Лечение поражений глаз отравляющими веществами. Рекомендации

Источник