В зависимости от величины светового импульса различают ожоги

В зависимости от величины светового импульса различают ожоги thumbnail

Термическое воздействие на человека и объекты может происходить при пожарах за счет непосредственного действия огня или тепловой радиации пламени, а также при воздействии светового излучения ядерного взрыва. Термическое воздействие на человека связано с перегревом и последующими биохимическими изменениями верхних слоев кожи и внутренних тканей. Воздействие на элементы объектов сопровождается их сгоранием, обугливаем и выходом из строя. Действие высоких температур вызывает пережог, деформацию и обрушение зданий и сооружений.

Дистанционное термическое воздействие высоких температур на объекты оценивается величиной поглощенной плотности теплового потока qпогл, Вт/м2и временемвоздействия теплового излучения τ, с. При относительно слабом тер­мическом воздействии будет повреждаться только верхний слой кожи (эпидермис) на глубину около 1 мм (ожог I степени — по­краснение кожи). Увеличение плотности теплового потока или дли­тельности излучения приводит к воздействию на нижний слой кожи — дерму (ожог II степени — появление волдырей) и под­кожный слой (ожог III степени).

Время достижения «порога боли» для человека τ, с, связано с плотно­стью теплового потока q, кВт/м2, соотношением

Облучение до 350 Вт/м2 не вызывает неприятного ощущения, до 1050 Вт/м2 — ощущается жжение в месте облучения, а температу­ра кожи в этом районе может повыситься на 10°С. При облучении до 1400 Вт/м2 увеличивается частота пульса, а до 3500 Вт/м2 — возможны ожоги. Возгорание материалов поверхностей объектов происходит, если плотность теплового потока q от источника огня больше критической. Для каждого материала существует критическое значение плот­ности теплового потока qкр, при котором воспламенение не про­исходит даже при длительным тепловом воздействии.

При ядерных взрывах,(ЯВ), взрывах газовоздушной смеси (ГВС) образуется очаг поражения с УВВ и световым излучением («огненный шар»). Световое излучение – это электромагнитное излучение в ультрафиолетовой, видимой и инфракрасной частях спектра электромагнитных волн. Основным параметром, характеризующим поражающее действие светового излучения, является световой импульс Iси — это количе­ство световой энергии, падающей за все время свечения огненного шара на 1 м2 освещаемой поверхности, перпендикулярной к на­правлению излучения. Световой импульс измеряется в Дж/м2, или ккал/см2 (1 ккал/см2 = 4,2 · 104Дж/м2). Световое излучение вызывает ожоги открытых участков тела, поражение глаз (временное или полное), пожары.

В зависимости от величины светового импульса различают ожоги разной степени .

Ожоги 1-й степени вызываются световым импульсом 2…4 ккал/см2(84…168 кДж/м2). При этом наблюдается покраснение кожных по­кровов. Лечения обычно не требуется.

Ожоги 2-й степени вызываются световым импульсом 5…8 ккал/см2 (210…336 кДж/м2). На коже образуются пузыри, на­полненные прозрачной жидкостью. Если площадь ожога значитель­ная, то человек может потерять работоспособность и нуждается в лечении. Выздоровление может наступить даже при ожоге площа­дью до 60% поверхности кожи.

Ожоги 3-й степени наблюдаются при величине светового им­пульса 9… 15 ккал/см2 (368…630 кДж/м2). Происходит омертвление кожи с поражением ростового слоя и образованием язв. Требуется длительное лечение.

Ожоги 4-й степени имеют место при световом импульсе свыше 15 ккал/см2 (630 кДж/м2). Происходит омертвление более глубоких слоев ткани (подкожной клетчатки, мышц, сухожилий, костей).

Здоровые взрослые люди и подростки выживают, если ожоги II и III степени охватывают менее 20 % поверхности тела. Выжи­ваемость пострадавших даже при интенсивной медицинской по­мощи резко снижается, если ожоги II и III степени составляют 50 % и более от поверхности тела.

Опасность термического воздействия на строительные конст­рукции связана со значительным снижением их строительной проч­ности при превышении определенной температуры. Степень устойчивости сооружения к тепловому воздействию зависит от предела огнестойкости конструкции, характеризуемо­го временем, по истечении которого происходит потеря несущей способности. При проектировании зданий и сооружений используют желе­зобетонные конструкции, предел огнестойкости которых значи­тельно выше, чем у металлических.

Защитой людей от светового излучения ЯВ может служить любая непрозрачная преграда, любой объект, создающий тень. Защитой объектов – применение несгораемых или в меньшей степени возгораемых материалов покрытия наружных поверхностей.

Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Степень ожога Значения Uсв , кДж/м2 Характер поражения
I 80 – 160 Покраснение и припухлость кожи
II 160 – 400 Образование пузырей
III 400 – 600 Омертвление глубоких слоев кожи
IV > 600 Обугливание кожи и более глубоких тканей

Временное ослепление может длиться примерно от нескольких секунд до часа.

Лучшей защитой от светового излучения является использование любой непрозрачной преграды (деревьев в лесу, складок рельефа, углублений в земле, зданий и сооружений любого характера, защитных сооружений), а для глаз – темных очков.

Читайте также:  Лечение ожога от спиртового компресса

И вообще, никогда не стоит смотреть на светящуюся область, а надо прятаться.

Одежду следует носить серую и желательно шерстяную, — она хуже поддается возгоранию.

Здания, сооружения и т.п. лучше всего строить из несгораемых материалов, а сгораемые элементы пропитывать специальными огнезащитными составами или же обмазывать глиной и т.п.

2.3.3. Проникающая радиация –

представляет собой поток гамма-излучения и нейтронов, распространяющийся от центра взрыва во все стороны до нескольких километров и вызывающий у живых организмов острую лучевую болезнь.

Гамма-излучение представляет собой мощную электромагнитную волну очень высокой частоты, (малой длины волны), что позволяет ей проходить даже через самые прочные материалы.

Нейтронный поток также обладает высокой проникающей способностью, а по биологическому воздействию в 5-20 раз опаснее гамма-излучения.

Рис. 13.Механизм действия проникающей радиации

Время действия проникающей радиации до нескольких десятков секунд с момента взрыва.

Поражающее действие проникающей радиации характеризуется дозой облучения.

Различают 4 вида доз:

— зкспозиционную X = dQ/dm (Кулон/кг, рентген: 1Кл/кг = 3876 Р);

— поглощенную D = de /dm (Грей=Дж/кг, рад: 1 Гр = 100 рад);

— эквивалентную H = WRD (Зиверт, бэр: 1 Зв = 100 бэр; WR: для α =20, для β,γ=1,

для осколков деления и нейтронов =5-20);

— эффективную Eтела = ΣWTH (Зв, бэр):

WT: для гонад=0,2; для кост. мозга, легких, ЖКХ= по 0,12; для мочевого пузыря, печени, грудей, пищевода, щитовидки= по 0,05; для кожи и костей = по 0,01)

В ГО для расчетов используют или экспозиционную, или поглощенную дозы, считая рентген и рад эквивалентными.

Суммарная поглощенная доза равняется сумме доз от гамма и нейтронного излучений и зависит от вида ЯБ, его мощности и расстояния до центра взрыва:

D = Dγ + Dn

Следствием облучения может стать острая лучевая болезнь, возникающая при однократном облучении (облучение в течение от нескольких секунд до 4 суток)

поглощенными дозами 1 Гр и более.

Таблица 6

Дата добавления: 2014-01-15; Просмотров: 1083; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник

таблица

Степень
ожога
Величина светового импульса, кал/см2 Внешнее проявление поражения
1 2-4 Покраснение кожи
2 4-6 Образование пузырей
3 6-10 Омертвление кожи
4 Более 10 Обугливание

Степень ожога определяется величиной светового импульса. Ожоги I, II,III степени под летним хлопчатобумажным обмундированием наблюдается соответственно при импульсе 6,7 и 9 кал/см2 , а под шинелью — при импульсах 35,40 и 50 кал/см2 . Тяжесть ожогового поражения зависит от степени ожога, так и от размеров пораженных участков тела, человека. Даже ожоги I степени на обширной площади могут привести к потере боеспособности, тогда как пораженный с сильным ожогом на ограниченной площади может быть возвращен в строй после ока­зания ему медицинской помощи. Выход из строя людей в основ­ном определяется ожогами II степени.

Поражение глаз световым излучением будет являться од­ним из самых распространенных поражений личного состава световым излучением. Оно проявляется в виде временного ослепления, ожогов переднего отдела глаза (роговицы, век) и ожогов глазного дна.

Временное ослепление обычно не требует специальной по­мощи, как правило, проходит без каких-либо последствий, днем оно длится 1-5 минут, а ночью — до 30 мин и более. Радиус зоны временного ослепления в несколько раз превышает радиусы зон выхода из строя открыто расположенного личного состава от действий светового излучения и ударной волны.

Ожоги переднего отдела глаза возникают примерно при тех же величинах, световых импульсов, что и открытых участков тела. Ожоги глазного дна возможны только при прямом взгля­де на светящуюся область взрыва. Они приводят к временной или постоянной потере зрения.

Все поражения I, II, III,IV степени определяются различными степенями заболевания. I степень поражения, при кото­рой исход заболевания в основном благоприятный. Все или часть пораженных теряют боеспособность на непродолжитель­ный срок (в случае механических и термических поражении), или спустя некоторое время (2-4 нед.) при радиационных пора­жениях.

При II степени поражения весь личный состав теряет боеспособность немедленно — при термических и механических по­ражениях и спустя 2-3 недели — при радиационных поражениях. У 5-15% пораженных возможны смертельные исходы в результате развития осложнений.

К III степени относятся поражения, при которых личный сос­тав утрачивает боеспособность немедленно или спустя несколь­ко дней после взрыва. Смертность может достигнуть 20-80% в зависимости от объема оказываемой медицинской помощи.

При IV степени поражения исход заболевания неблагоприят­ный, в подавляющем большинстве случаев пораженные погибают в течение 10 суток после поражения.

Защита от светового излучения

Читайте также:  Плодовые деревья и их ожоги

Любая непрозрачная преграда на пути светового излучения, образующая зону тени, обычно является надежной защитой от светового излучения. Убежище, блиндажи, перекрытые щели, ка­бины автомобилей практически полностью исключают поражения ладей световым излучением. Личный состав, находящийся открыто на местности, может значительно уменьшить или полностью ис­ключить поражение световым излучением, если он после вспышки ядерного взрыва успеет занять ближайшее укрытие. Так, при взрыве ядерного боеприпаса крупного калибра при занятии укры­тия в течение 2 с воздействие светового излучения будет уменьшено в 2-5 раз. Использование личным составом СНЗ, ОКЗК, КЗС защищает от светового излучения. Шинель выдерживает свето­вой импульс до 10 кал/см2 , ОЗК более 10 кал/см2 , ОКЗК до 15 кал/см2 , при совместном использовании КЗС и ОКЗК выдержи­вает световой импульс до 20-25 кал/см2 . Для защиты глаз ис­пользуются специальные очки ОПФ. Применение их обеспечивает уменьшение радиуса светового слогового поражения глаз и со­кращение длительности адаптационного ослепления в несколько раз.

Поражающее действие светового излучения натехни­ку и сооружения может быть значительно ослаблено или полностью исключено проведением соответствующих мероприятий по защите таких, как экранирование светового излучения, повышение коэффициента отражения светового излучения поверхностям объектов, повышение стойкости и защитных свойств объектов к действию светового излучения (применение увлаж­нения, снежных обсыпок, использование огнестойких материа­лов, покрытие глиной и известью, пропитка чехлов и тентов огнестойким составом, проведение противопожарных меропри­ятий).

Проникающая радиация. Проникающая радиация представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва. Продолжительность действия проникающей радиации, составляете всего несколько секунд, тем не менее, она способна наносить тяжелое поражение личному составу. Поражающее действие проникающей радиации на людей обу­словлено тем, что гамма- излучение и нейтроны, проходя через живую ткань, вызывают процессы, в результате которых происхо­дит ионизация атомов и молекул, входящих в состав клеток. Это приводит к нарушений жизненных функций отдельных органов и систем и к развитию в организме специфического заболевания, называемого лучевой болезнью.

Характерной особенностью проникающей радиации является отсутствие боли и видимых изменений в организме человека во время облучения. Лучевая болезнь у пораженных развивается только спустя некоторое время.

Степень поражения организма проникающей радиацией опре­деляется, главным образом, величиной дозы, полученной человеком, временем набора этой дозы и зависит также от индиви­дуальных особенностей организма и общего состояния его в мо­мент облучения. Общее истощение, значительное физическое утомление, ранения повышают чувствительность организма к во­здействию проникающей радиации.

По тяжести заболевания лучевую болезнь принято делить на четыре степени.

Лучевая болезнь I степени (легкая) развивается при дозах облучения 150-250 рад и характеризуется общей слабостью, повышенной утомляемостью, головокружением, тошнотой, которые исчезают обычно через несколько дней. В большинстве случаев специального лечения не требуется.

Лучевая болезнь II степени (средней тяжести) развивает­ся при дозах облучения 250-400 рад. Она характеризуется те­ми же признаками что и лучевая болезнь I степени, но выра­жена более ярко. Заболевание в большинстве случаев заканчи­вается выздоровлением через 1,5-2 месяца, но в 20% случаев возможен летальный исход.

Лучевая болезнь III степени (тяжелая) развивается при дозах облучения 400-600 рад. Она характеризуется тем, что у пораженных появляется сильная головная боль, повышенная температура, слабость, резкое снижение аппетита, жажда, тошнота, рвота, понос (нередко с кровью), кровоизлияниево внутренние органы и в кожные покровы, изменение состава крови. Выздоровление возможно при условии своевременного и эффективного лечения. В 50% случаев наблюдается летальный исход.

Лучевая болезнь IV степени (крайне тяжелая) развивается при облучении дозами свыше 600 рад и в 100% случаев заканчивается летальным исходом.

В течении лучевой болезни различают четыре периода, ко­торые отчетливо проявляются при лучевой болезни II и III сте­пени: начальный период, или период первичной реакции; скры­тый период, или период мнимого благополучия; период разгара лучевой болезни и период разрушения болезни. До появления первичных признаков пораженный может сохранять боеспособ­ность.

При дозах облучения свыше 10000 рад у пораженных раз­вивается молниеносная форма лучевой болезни, приводящая к немедленной потере боеспособности.

Проникающая радиация, кроме поражения личного состава, вызывает засвечивание фотоматериалов (при дозах 2-3 рад), потемнение стекол оптических приборов (при дозах тысячи и более рад), может вывести из строя радиоэлектронную аппара­туру, особенно содержащую полупроводниковые элементы

Основным источником гамма-излучения являются осколки деления вещества заряда, находящиеся в зоне взрыва и радиоактивном облаке. Гамма-лучи и нейтроны способны проникать через значительные толщи различных материалов. При прохождении через различные материалы поток гамма-лучей ослабляется, причем, чем плотнее вещество, тем больше ослабление гамма-лучей. Например, в воздухе гамма-лучи распространяются на многие сотни метров, а в свинце всего лишь на несколько сантиметров.Нейтронный поток наиболее сильно ослабляется веществами, в состав которых входят легкие элементы (водород, углерод). Способность материалов ослаблять гамма-излучение и поток нейтронов можно характеризовать величиной слоя половинного ослабления.

Читайте также:  Волдыри от солнечного ожога у детей что делать

Слоем половинного ослабления называется толщина материала, проходя через, которую гамма-лучи и нейтроны ослабляются в 2 раза. При увеличении толщины материала до двух слоев половинного ослабления доза радиации уменьшается в 4 раза, до трех слоев — в 8 раз и т. д.

Источник

Термическое воздействие на человека и объекты может происходить при пожарах за счет непосредственного действия огня или тепловой радиации пламени, а также при воздействии светового излучения ядерного взрыва. Термическое воздействие на человека связано с перегревом и последующими биохимическими изменениями верхних слоев кожи и внутренних тканей. Воздействие на элементы объектов сопровождается их сгоранием, обугливаем и выходом из строя. Действие высоких температур вызывает пережог, деформацию и обрушение зданий и сооружений.

Дистанционное термическое воздействие высоких температур на объекты оценивается величиной поглощенной плотности теплового потока qпогл, Вт/м2и временемвоздействия теплового излучения τ, с. При относительно слабом тер­мическом воздействии будет повреждаться только верхний слой кожи (эпидермис) на глубину около 1 мм (ожог I степени — по­краснение кожи). Увеличение плотности теплового потока или дли­тельности излучения приводит к воздействию на нижний слой кожи — дерму (ожог II степени — появление волдырей) и под­кожный слой (ожог III степени).

Время достижения «порога боли» для человека τ, с, связано с плотно­стью теплового потока q, кВт/м2, соотношением

Облучение до 350 Вт/м2 не вызывает неприятного ощущения, до 1050 Вт/м2 — ощущается жжение в месте облучения, а температу­ра кожи в этом районе может повыситься на 10°С. При облучении до 1400 Вт/м2 увеличивается частота пульса, а до 3500 Вт/м2 — возможны ожоги. Возгорание материалов поверхностей объектов происходит, если плотность теплового потока q от источника огня больше критической. Для каждого материала существует критическое значение плот­ности теплового потока qкр, при котором воспламенение не про­исходит даже при длительным тепловом воздействии.

При ядерных взрывах,(ЯВ), взрывах газовоздушной смеси (ГВС) образуется очаг поражения с УВВ и световым излучением («огненный шар»). Световое излучение – это электромагнитное излучение в ультрафиолетовой, видимой и инфракрасной частях спектра электромагнитных волн. Основным параметром, характеризующим поражающее действие светового излучения, является световой импульс Iси — это количе­ство световой энергии, падающей за все время свечения огненного шара на 1 м2 освещаемой поверхности, перпендикулярной к на­правлению излучения. Световой импульс измеряется в Дж/м2, или ккал/см2 (1 ккал/см2 = 4,2 · 104Дж/м2). Световое излучение вызывает ожоги открытых участков тела, поражение глаз (временное или полное), пожары.

В зависимости от величины светового импульса различают ожоги разной степени .

Ожоги 1-й степени вызываются световым импульсом 2…4 ккал/см2(84…168 кДж/м2). При этом наблюдается покраснение кожных по­кровов. Лечения обычно не требуется.

Ожоги 2-й степени вызываются световым импульсом 5…8 ккал/см2 (210…336 кДж/м2). На коже образуются пузыри, на­полненные прозрачной жидкостью. Если площадь ожога значитель­ная, то человек может потерять работоспособность и нуждается в лечении. Выздоровление может наступить даже при ожоге площа­дью до 60% поверхности кожи.

Ожоги 3-й степени наблюдаются при величине светового им­пульса 9… 15 ккал/см2 (368…630 кДж/м2). Происходит омертвление кожи с поражением ростового слоя и образованием язв. Требуется длительное лечение.

Ожоги 4-й степени имеют место при световом импульсе свыше 15 ккал/см2 (630 кДж/м2). Происходит омертвление более глубоких слоев ткани (подкожной клетчатки, мышц, сухожилий, костей).

Здоровые взрослые люди и подростки выживают, если ожоги II и III степени охватывают менее 20 % поверхности тела. Выжи­ваемость пострадавших даже при интенсивной медицинской по­мощи резко снижается, если ожоги II и III степени составляют 50 % и более от поверхности тела.

Опасность термического воздействия на строительные конст­рукции связана со значительным снижением их строительной проч­ности при превышении определенной температуры. Степень устойчивости сооружения к тепловому воздействию зависит от предела огнестойкости конструкции, характеризуемо­го временем, по истечении которого происходит потеря несущей способности. При проектировании зданий и сооружений используют желе­зобетонные конструкции, предел огнестойкости которых значи­тельно выше, чем у металлических.

Защитой людей от светового излучения ЯВ может служить любая непрозрачная преграда, любой объект, создающий тень. Защитой объектов – применение несгораемых или в меньшей степени возгораемых материалов покрытия наружных поверхностей.

Источник